Frequency of C-ANCA, P-ANCA, MPO & PR3 Abs in Vasculitis

<table>
<thead>
<tr>
<th>Disease Category</th>
<th>C-ANCA</th>
<th>P-ANCA</th>
<th>Anti-MPO</th>
<th>Anti-PR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granulomatosis with polyangiitis (Wegener’s) (GPA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Active – generalized</td>
<td>4+</td>
<td>1+</td>
<td>1+</td>
<td>4+</td>
</tr>
<tr>
<td>• Active – limited</td>
<td>3+</td>
<td><1%</td>
<td><1+</td>
<td>3+</td>
</tr>
<tr>
<td>Idiopathic Necrotizing and Crescentic Glomerulonephritis without Immune deposits</td>
<td>1-2+</td>
<td>3-4+</td>
<td>3-4+</td>
<td>1-2+</td>
</tr>
<tr>
<td>Microscopic Polyangiitis (MPA)</td>
<td>1-2+</td>
<td>3+</td>
<td>3+</td>
<td>1-2+</td>
</tr>
<tr>
<td>Churg-Strauss Syndrome</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Classic Polyarteritis Nodosa</td>
<td>Rare</td>
<td>Rare</td>
<td>Rare</td>
<td>Rare</td>
</tr>
<tr>
<td>Polyangiitis Overlap Syndrome</td>
<td>1+</td>
<td>1+</td>
<td>1+</td>
<td>1+</td>
</tr>
</tbody>
</table>

Grading System: **1+** (15-25%) **2+** (26-50%) **3+** (51-75%) **4+** (76-100%)

Combining ANCA IFA testing with ELISA for Anti-PR3 and Anti-MPO are the preferred assays in evaluating these disorders.

Guide to Interpretation for ANCA

C-ANCA are present in 90% of patients with active generalized GPA. Sensitivity decreases to 60% with inactive or limited GPA. A negative C-ANCA, therefore, does not exclude a diagnosis of GPA.

C-ANCA in GPA are primarily due to anti-Proteinase 3 antibodies (anti-PR3). The presence of both C-ANCA and anti-PR3 yields a sensitivity of 73% and a specificity of 99% for GPA.

90% of anti-PR3 positive sera are also C-ANCA positive.

Serial ANCA titers can be useful in monitoring disease activity in a modest proportion of patients, but therapeutic decisions based solely on changes in ANCA titers are not generally recommended in the majority of patients.

C-ANCA are seen in only a minority of patients with Microscopic Polyangiitis and Idiopathic Necrotizing and Crescentic Glomerulonephritis (without immune deposits).

Although the majority of GPA patients have C-ANCA and most patients with ANCA-associated Glomerulonephritis without systemic manifestations have P-ANCA, there is some overlap.

P-ANCA are a useful marker for MPA, Vasculitis-Associated Pauciimmune Crescentic Glomerulonephritis and Idiopathic Pauciimmune Crescentic Glomerulonephritis.

In patients with ANCA-associated Glomerulonephritis and Systemic Necrotizing Vasculitis about 90% of P-ANCA are secondary to anti-MPO abs.

The presence of both P-ANCA and MPO yields a sensitivity of 67% and a specificity of 99% for MPA.

Positive predictive value of ANCA positivity in Rapid Progressive Glomerulonephritis approaches 98%.

(continued on back)
P-ANCA are occasionally present in a minority of patients with GPA.

P-ANCA are present in 10% of Systemic Lupus Erythematosus patients.

False positive P-ANCA can be caused by ANA’s; hence, concurrent ANA testing is performed on P-ANCA positive sera.

Atypical P-ANCA are commonly seen in Ulcerative Colitis, Sclerosing Cholangitis and Type I Autoimmune Hepatitis, but are unrelated to anti-MPO antibodies.

About 30% of patients with antiglomerular basement membrane disease have ANCA positivity (mainly anti-MPO). A small percentage of GPA and MPA patients will have antiglomerular basement membrane antibodies.

P-ANCA can be seen in many CTD, including SLE, RA, DM/PM, MCTD, Sjogren’s Syndrome, Reactive Arthritis, Ankylosing spondylitis and others, directed against a variety of intracellular neutrophil cytoplasmic antigens.

Additional ANCA antigens recognized in other autoimmune diseases include catalase, alpha-enolase, actin, defensin, elastase, HMG1/2, cathepsin G, lactoferrin and lysozyme; all of these antigen cause a P-ANCA pattern. Atypical C-ANCA can be produced by bactericidal/permeability-increasing protein (BPI) (commonly seen in Cystic Fibrosis). Most of these antigens lack clinical utility, although they are being investigated in disease states such as SLE.

Drug Induced ANCA Associated Vasculitis

Several drugs have been implicated in ANCA-associated Vasculitis including PTU, Methimazole, Minocycline, Hydralazine, Carbimazole, Allopurinol, Cocaine, Phenytoin, Levamisole and are directed against various cytoplasmic neutrophil antigens.

Infections Associated with ANCA

- SBE (Subacute endocarditis)
- Invasive Amoebiasis
- Cystic Fibrosis (Pseudomonas)
- HIV/AIDS
- Some Respiratory Infections
- Chromomycosis
- Acute Malaria
- Hepatitis C
- Tuberculosis
- Parvovirus B19
- Aspergillosis
- Histoplasmosis
- Leprosy

References

© October 2013, RDL, Inc.